
Week 6 of Introduction to Biological System
Design

Dynamical System Analysis Tools

Ayush Pandey

Pre-requisite: To get the best out of this notebook, make sure that you have the basic
understanding of ordinary differential equations. For more information on ODEs you may
refer to any standard book on engineering math. To learn more about how to numerically
simulate ODEs, refer to week3_intro_ode.ipynb. Further, it is assumed that you have a
working knowledge of use of Hill functions to model gene regulation. Computational
examples with Hill functions are discussed in week4_hill_functions.ipynb.

This notebook presents biological design choices by use of numerical simulations,
mathematical models, and response times of biological systems.

Disclaimer: Content in this notebook is inspired by the fabulous compuatational notebook by
Justin Bois and Michael Elowitz on Biological Circuit Design.

Design Choice - Activator or Repressor

https://pages.hmc.edu/pandey/reading/week3_intro_ode.ipynb
https://pages.hmc.edu/pandey/reading/week3_intro_ode.ipynb
https://pages.hmc.edu/pandey/reading/week4_hill_functions.pdf
https://pages.hmc.edu/pandey/reading/week4_hill_functions.pdf
https://colab.research.google.com/github/justinbois/biological-circuit-design-colab/blob/master/chapters/03_small_circuits.ipynb
https://colab.research.google.com/github/justinbois/biological-circuit-design-colab/blob/master/chapters/03_small_circuits.ipynb


Problem setting: How can we use computational tools to explore the biological design
choice of choosing a repressor or an activator to regulate a gene. As an example, we
consider the case of regulating a gene by transcription factors in response to environmental
signals of different kinds. The first environmental signal that we consider is a toxin signal. A
toxin in the cellular environment will trigger an anti-toxin gene expression in the cell. The
anti-toxin expression may be activated by inducing a chemical inducer that will bind to the
repressor that keeps the anti-toxin gene repressed. An alternative design could be when the
presence of toxin in the environment triggers a chemical inducer that activates a
transcription factor that recruits RNA polymerase to activate the transcription of the anti-
toxin gene.

On the other hand, a different kind of environmental signal could be a signal such as
response to glucose in the environment. This would be a pathway that would be active most
of the time as the cell grows since it requires glucose for various metabolic activities. One of
the first transcriptional activators discovered in bacteria was the AraC transcription factor. A
primary function of the AraC family transcription factors is to regulate sugar catabolism and
utilizing the sugar in cells for various metabolic functions. So, on detecting sugar in the
environment, a transcription factor (such as AraC) is triggered. Similar to the toxin signal, the
mechanism to activate sugar catabolism genes could involve negative induction of a
repressor or a positive induction of an activator.

We will use computational tools at our disposal to create a very simple simulation to explore
the design choices.

Environmental Signals - Toxin and Glucose



Gene Regulation Response (Ideal)

In [144… from scipy import signal
import matplotlib.pyplot as plt
import numpy as np
timepoints = np.linspace(0, 1000, 1000, endpoint = True)
max_toxin_value = 20 #arbitrary units
toxin_signal = max_toxin_value*np.ones_like(timepoints) *\
-1*signal.square(2*np.pi*2*timepoints, duty = 0.75)

# Cut off the signal at 0 so that there are no negative values
for i, s in enumerate(toxin_signal):

if s < 0:
toxin_signal[i] = 0

        
fig, ax = plt.subplots(1,2, figsize = (15,5), sharey = True)
ax[0].plot(timepoints, toxin_signal)
ax[0].set_xlabel('Time', fontsize = 18)
ax[0].set_ylabel('Toxin levels', fontsize = 18)
ax[0].tick_params(labelsize = 14)

max_glucose_value = 20 #arbitrary units
glucose_signal = max_glucose_value*np.ones_like(timepoints) *\
-1*signal.square(2*np.pi*2*timepoints, duty = 0.25)
for i, s in enumerate(glucose_signal):

if s < 0:
glucose_signal[i] = 0

ax[1].plot(timepoints, glucose_signal)
ax[1].set_xlabel('Time', fontsize = 18)
ax[1].set_ylabel('Glucose levels', fontsize = 18)
ax[1].tick_params(labelsize = 14)
fig.suptitle('Environmental Signal Levels Over Many Cell Generations', 

fontsize = 18);



In [145… def regulated_gene(x,t,*args):
k_tx, u, K, n, d_x = args
return k_tx*(u**n/(K**n + u**n)) - d_x*x

from scipy.integrate import odeint
k_tx = 2
K = 15
d_x = 0.06
n = 2

fig, all_axes = plt.subplots(1,2, figsize = (15,5), sharey = True)
fig.suptitle('Response to Environmental Signals Over' + \

'Many Cell Generations', fontsize = 18);
ax = all_axes[0]
# For u = 0
previous_time = 0
array_nonzero = np.where(toxin_signal != 0)[0]
next_time = array_nonzero[0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_toxin_value
previous_time = next_time
array_zero = np.where(toxin_signal == 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time,next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, max_toxin_value, K, n, d_x))

ax.plot(t_solve, solution, 'k', lw = 3)

# For u = 0 again
previous_time = next_time
array_zero = np.where(toxin_signal != 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

ax.plot(t_solve, solution, 'k', lw = 3)

# For u =/= 0 
previous_time = next_time
next_time = int(timepoints[-1]) # last point
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, max_toxin_value, K, n, d_x))



args k_tx max_toxin_value d_x
ax.plot(t_solve, solution, 'k', lw = 3, label = 'Anti-Toxin')
ax.plot(timepoints, toxin_signal, 'b', lw = 3, 

alpha = 0.6, label = 'Toxin')
ax.set_xlabel('Time', fontsize = 18)
ax.set_ylabel('Toxin/Anti-Toxin levels', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);

ax = all_axes[1]
# For u = 0
previous_time = 0
array_nonzero = np.where(glucose_signal != 0)[0]
next_time = array_nonzero[0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_glucose_value
previous_time = next_time
array_zero = np.where(glucose_signal == 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time,next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, max_glucose_value, K, n, d_x))

ax.plot(t_solve, solution, 'k', lw = 3)

# For u = 0 again
previous_time = next_time
array_zero = np.where(glucose_signal != 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

ax.plot(t_solve, solution, 'k', lw = 3)

# For u =/= 0 
previous_time = next_time
next_time = int(timepoints[-1]) # last point
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, max_glucose_value, K, n, d_x))

ax.plot(t_solve, solution, 'k', lw = 3, 
label = 'Sugar Catabolism')

ax.plot(timepoints, glucose_signal, 'b', lw = 3, 
alpha = 0.6, label = 'Glucose')

set_xlabel('Time' fontsize 18)



Non-specific binding (leaky) expression with activator
When there is no input => activator is not bound and there can be leaky expression. When
there is an input, activator is bound so that there is no leaky expression.

ax.set_xlabel('Time', fontsize = 18)
ax.set_ylabel('Glucose/Metabolic TF levels', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);



In [149… def regulated_gene(x,t,*args):
k_tx, u, K, n, d_x = args
return k_tx*(u**n/(K**n + u**n)) - d_x*x

def leaky_expression(x, t, *args):
alpha, k_tx, d_x = args 
return k_tx*alpha - d_x*x

from scipy.integrate import odeint
k_tx = 2
K = 15
d_x = 0.06
n = 2
alpha = 0.09

fig, all_axes = plt.subplots(1,2, figsize = (15,5), sharey = True)
fig.suptitle('Activator Response (with leak) to Environmental Signals'+\

'Over Many Cell Generations', fontsize = 18);
ax = all_axes[0]
# For u = 0
previous_time = 0
array_nonzero = np.where(toxin_signal != 0)[0]
next_time = array_nonzero[0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (alpha, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_toxin_value
previous_time = next_time
array_zero = np.where(toxin_signal == 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time,next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, max_toxin_value, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (0, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = 0 again
previous_time = next_time
array_zero = np.where(toxin_signal != 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 



regulated_gene y0
t = t_solve, 
args = (k_tx, 0, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (alpha, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_toxin_value
previous_time = next_time
next_time = int(timepoints[-1]) # last point
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, max_toxin_value, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (0, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3, label = 'Leak')
ax.plot(t_solve, solution, 'k', lw = 3, label = 'Anti-Toxin')
ax.plot(timepoints, toxin_signal, 'b', lw = 3, 

alpha = 0.6, label = 'Toxin')
ax.set_xlabel('Time', fontsize = 18)
ax.set_ylabel('Toxin/Anti-Toxin levels', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);

ax = all_axes[1]

# For u = 0
previous_time = 0
array_nonzero = np.where(glucose_signal != 0)[0]
next_time = array_nonzero[0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (alpha, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_glucose_value
previous_time = next_time
array_zero = np.where(glucose_signal == 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time,next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, max_glucose_value, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t t_solve



t = t_solve, 
args = (0, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = 0 again
previous_time = next_time
array_zero = np.where(glucose_signal != 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (alpha, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_glucose_value
previous_time = next_time
next_time = int(timepoints[-1]) # last point
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, max_glucose_value, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (0, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3, label = 'Leak')
ax.plot(t_solve, solution, 'k', lw = 3, 

label = 'Sugar Catabolism')
ax.plot(timepoints, glucose_signal, 'b', 

lw = 3, alpha = 0.6, label = 'Glucose')
ax.set_xlabel('Time', fontsize = 18)
ax.set_ylabel('Glucose/Metabolic TF levels', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);



Non-specific binding (leaky) expression with
repressor
When there is no input => repressor is bound and there is no leak. But when there is an
input signal, repressor is unbound and there can be leaky expression as well.



In [152… def regulated_gene(x,t,*args):
k_tx, u, K, n, d_x = args
return k_tx*(u**n/(K**n + u**n)) - d_x*x

def leaky_expression(x, t, *args):
alpha, k_tx, d_x = args 
return k_tx*alpha - d_x*x

from scipy.integrate import odeint
k_tx = 2
K = 15
d_x = 0.06
n = 2
alpha = 0.09

fig, all_axes = plt.subplots(1,2, figsize = (15,5), sharey = True)
fig.suptitle('Repressor Response (with leak) to Environmental'+ \

'Signals Over Many Cell Generations', fontsize = 18);
ax = all_axes[0]

# For u = 0
previous_time = 0
array_nonzero = np.where(toxin_signal != 0)[0]
next_time = array_nonzero[0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (0, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_toxin_value
previous_time = next_time
array_zero = np.where(toxin_signal == 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time,next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, max_toxin_value, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (alpha, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = 0 again
previous_time = next_time
array_zero = np.where(toxin_signal != 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)



next_time previous_time
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (0, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_toxin_value
previous_time = next_time
next_time = int(timepoints[-1]) # last point
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, max_toxin_value, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (alpha, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3, label = 'Leak')
ax.plot(t_solve, solution, 'k', lw = 3, label = 'Anti-Toxin')
ax.plot(timepoints, toxin_signal, 'b', lw = 3, 

alpha = 0.6, label = 'Toxin')
ax.set_xlabel('Time', fontsize = 18)
ax.set_ylabel('Toxin/Anti-Toxin levels', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);

ax = all_axes[1]

# For u = 0
previous_time = 0
array_nonzero = np.where(glucose_signal != 0)[0]
next_time = array_nonzero[0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (0, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_glucose_value
previous_time = next_time
array_zero = np.where(glucose_signal == 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time,next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = 0,

t = t_solve, 
args = (k_tx, max_glucose_value, K, n, d_x))

leaky_solution odeint(leaky_expression y0 0



leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (alpha, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = 0 again
previous_time = next_time
array_zero = np.where(glucose_signal != 0)[0]
next_time = array_zero[np.where(array_zero > previous_time)][0]
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, 0, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (0, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3)
ax.plot(t_solve, solution, 'k', lw = 3)

# For u = max_glucose_value
previous_time = next_time
next_time = int(timepoints[-1]) # last point
t_solve = np.linspace(previous_time, next_time, 

next_time - previous_time)
solution = odeint(regulated_gene, y0 = solution[-1], 

t = t_solve, 
args = (k_tx, max_glucose_value, K, n, d_x))

leaky_solution = odeint(leaky_expression, y0 = 0, 
t = t_solve, 
args = (alpha, k_tx, d_x))

ax.plot(t_solve, leaky_solution, 'r', lw = 3, label = 'Leak')
ax.plot(t_solve, solution, 'k', lw = 3, 

label = 'Sugar Catabolism')
ax.plot(timepoints, glucose_signal, 'b', lw = 3, alpha = 0.6,

label = 'Glucose')
ax.set_xlabel('Time', fontsize = 18)
ax.set_ylabel('Glucose/Metabolic TF levels', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);



Two papers that discuss the mechanisms and detailed models behind this demand theory
are:

1. Shinar et al. 2005 "Rules for biological regulation basedon error minimization". URL -
Uses the non-specific binding theory to prove the evolutionary selections against
repressors in high demand genes and selection against activators in low demand genes.

2. Gerland et al. 2008 "Evolutionary selection between alternative mode of gene
regulation". URL - Uses mutation models to show that the population size and time-
scales of environmental variations guide the evolutionary selection for repressors and
activators in different situations.

Design Choice - Response Time
Consider the unregulated gene expression model (from week3_intro_ode.ipynb):

We derived the analytical solution for this model in Week 3. It is given by:

The steady-state concentration of X is given by . Clearly, the response time is only

dependent on the degradation parameter . We define the response time as the time that
the system takes to reach , or approximately 63% of its maximum value. This response

time is equal to . The time  is the time the system takes to reach half of the

maximum value. We compute these metrics of speed of response using the following code:

= k − dX
dX

dt

X(t) = (1 − e−dt)k

d

k

d

d

1 − 1
e

tr = 1
d

t1/2

https://www.pnas.org/content/pnas/103/11/3999.full.pdf
https://www.pnas.org/content/pnas/103/11/3999.full.pdf
https://www.pnas.org/content/pnas/106/22/8841.full.pdf
https://www.pnas.org/content/pnas/106/22/8841.full.pdf
https://pages.hmc.edu/pandey/reading/week3_intro_ode.pdf
https://pages.hmc.edu/pandey/reading/week3_intro_ode.pdf


Note on 2nd order system response

For 2nd order underdamped systems that overshoot the steady-state value, the response
time is usually defined using a rise-time metric. Rise time is defined as the time taken to
reach 90% of the steady-state value. To measure the error in response, a settling time metric
is defined. Settling time is defined as the time the system takes to reach within 2% (or 5%) of
the steady-state value.

Tuning the speed of response

In [153… # Parameters
k = 100
d = 1

# Dynamics
timepoints = np.linspace(0, 6, 400)
X = k / d * (1 - np.exp(-d * timepoints))

# Plot response
ax = plt.axes()
ax.plot(timepoints, X, lw=4)

# Mark the response time (when we get to level 1-1/e)
t0 = 1 / d
x0 = k / d * (1 - np.exp(-1))
t_half = np.log(2)/d
ax.axvline(t0, color = 'k', ls = '--', lw = 4, 

label = 'Response Time')
ax.axvline(t_half, color = 'r', ls = '--', lw = 4, 

label = 't-half')
ax.set_xlabel('Time', fontsize = 18)
ax.set_ylabel('$X(t)$', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);



In [155… # Parameters
k = 100
d = np.array([1, 2, 3])
colors = ['r','k','b']
# Compute dynamics
timepoints = np.linspace(0, 6, 400)
X = [k / d_i * (1 - np.exp(-d_i * timepoints)) for d_i in d]

fig, ax = plt.subplots(1,2, figsize = (15,8))
ax[0].set_title('k = '+ str(k) + ', d = ' + str(d), 

fontsize = 18)
ax[0].set_xlim([0,6])
ax[0].set_xlabel('Time', fontsize = 18)
ax[0].set_ylabel('$X(t)$', fontsize = 18)
ax[0].tick_params(labelsize = 14);
ax[1].set_title('Normalized steady-states', fontsize = 18)
ax[1].set_xlim([0,6])
ax[1].set_xlabel('Time', fontsize = 18)
ax[1].set_ylabel('$X(t)$', fontsize = 18)
ax[1].tick_params(labelsize = 14);
for x_vals, d_i, color in zip(X, d, colors):

ax[0].plot(timepoints, x_vals, color=color, lw=4)
ax[0].scatter(1 / d_i, k / d_i * (1 - np.exp(-1)), 

color=color)
ax[0].axvline(1 / d_i, color = 'k', ls = '--', lw = 4, 

alpha = 0.2)
ax[1].plot(timepoints, x_vals / np.max(x_vals), 

color=color, lw=4)
ax[1].scatter(1 / d_i, 1 - np.exp(-1), 

color=color)
ax[1].axvline(1 / d_i, color = 'k', ls = '--', 

lw = 4, alpha = 0.2)



Negative autoregulation accelerates response times
Consider the negative autoregulation model from week4_hill_functions.ipynb:

Let us compare the time response of the negative autoregulation to the unregulated gene
expression discussed above:

= k − dX
dX

dt

Kd

Kd+X

In [156… # Negative autoregulation model (from HW 4)
def negative_autoregulation(x, t, *args):

k, Kd, d = args
return k * (Kd / (Kd + x)) - d * x

from scipy.integrate import odeint
# Parameters
timepoints = np.linspace(0, 6, 400)
Kd = 1
d = 1
k = 100

# Negative autoregulated solution
X_nar = odeint(negative_autoregulation, y0 = 0, 

t = timepoints, args=(k, Kd, d))

# Unregulated solution
unregulated_X = (k/d)*(1 - np.exp(-d * timepoints))

fig, ax = plt.subplots(1,2, figsize = (15,8))
ax[0].set_title('Negative Autoregulation and Unregulated expression',

fontsize = 18)
ax[0].set_xlim([0,6])
ax[0].set_xlabel('Time', fontsize = 18)
ax[0].set_ylabel('$X(t)$', fontsize = 18)
ax[0].tick_params(labelsize = 14);
ax[1].set_title('Normalized steady-states', fontsize = 18)
ax[1].set_xlim([0,6])

ax[1].set_xlabel('Time', fontsize = 18)
ax[1].set_ylabel('$X(t)$', fontsize = 18)
ax[1].tick_params(labelsize = 14);

ax[0].plot(timepoints, X_nar[:,0], color='b', lw=4, 
label = 'Negative Autoregulation')

ax[0].plot(timepoints, unregulated_X, color='k', lw=4, 
label = 'Unregulated')

ax[0].legend(fontsize = 14)
ax[1].plot(timepoints, X_nar[:,0] / np.max(X_nar[:,0]), 

color='b', lw=4, label = 'Negative Autoregulation')
ax[1].plot(timepoints, unregulated_X / np.max(unregulated_X),

color='k', lw=4, label = 'Unregulated')
ax[1].legend(fontsize = 14);

https://pages.hmc.edu/pandey/reading/week4_hill_functions.pdf
https://pages.hmc.edu/pandey/reading/week4_hill_functions.pdf



